
NI-488™ and NI-488M™ are trademarks of National Instruments Corporation. Product
and company names are trademarks or trade names of their respective companies.

321319A-01 © Copyright 1996 National Instruments Corp. All rights reserved. June 1996

Supplement to the NI-488M Software Reference
Manual for AIX

This supplement contains a discussion of the NI-488 function ibdev and the
AIX-specific functions ibhwdiag and ibpost that are not documented in the standard
NI-488M Software Reference Manual. The purpose, syntax, and C language programming
examples for each function are given. The functions ibdev and ibpost are part of the
standard AIX GPIB language interface. The ibhwdiag function is available as a separate
linkable object file, which is not included with the AIX driver software. For descriptions of
all other NI-488 functions, please refer to the NI-488M Software Reference Manual.

2

IBDEV (3) device only IBDEV (3)

Name
ibdev - open and initialize an unused device when the device name is unknown

Synopsis
#include <sys/ugpib.h>
ud = int ibdev (int boardindex, int pad, int sad,

 int tmo, int eot, int eos)

Description
boardindex is an index from 0 to [(number of boards) - 1] of the access board
that the device descriptor must be associated with. The arguments pad , sad , tmo ,
eot , and eos dynamically set the software configuration for the NI-488 I/O
functions. These arguments configure the primary address, secondary address, I/O
timeout, asserting EOI on last byte of data sourced, and the End-Of-String mode and
byte, respectively. (Refer to the ibpad, ibsad, ibtmo, ibeot, and ibeos function
descriptions for more information on each argument.) The device descriptor is
returned in the variable ud .

The ibdev command selects an unopened device, opens it, and initializes it. You
can use this function in place of ibfind .

ibdev returns a device descriptor of the first unopened user-configurable device
that it finds. For this reason, it is very important to use ibdev only after all of your
ibfind calls have been made. This is the only way to ensure that ibdev does not
use a device that you plan to use via an ibfind call. The ibdev function
performs the equivalent of the ibonl function to open the device.

Note: The device descriptor of the NI-488M driver can remain open across
invocations of an application, so be sure to return the device descriptor to
the pool of available devices by calling ibonl with v=0 when you are
finished using the device. If you do not, that device will not be available
for the next ibdev call.

3

If the ibdev call fails, a negative number is returned in place of the device
descriptor. There are two distinct errors that can occur with the ibdev call:

• If no device is available or the specified board index refers to a non-existent
board, it returns the EDVR or ENEB error.

• If one of the last five parameters is an illegal value, it returns with a good board
descriptor and the EARG error.

Example
ibdev opens an available device and assigns it to access gpib0 (board = 0) with
a primary address of 6 (pad = 6), a secondary address of 0x67 (sad = 0x67), a
timeout of 10 ms (tmo = 7), the END message enabled (eot = 1) and the EOS
mode disabled (eos = 0).

if ((ud = ibdev(0,6,0x67,7,1,0)) < 0) {
/* Handle GPIB error here */
if (iberr == EDVR) {

/* bad boardindex or no devices
 * available.
 */

}
else if (iberr == EARG) {

/* The call succeeded, but at least one
 * of pad, sad, tmo, eos, eot is incorrect.
 */

}

See Also
ibfind (3), ibpad (3), ibsad (3), ibtmo (3), ibeot (3), and ibeos (3) in the NI-488M
Software Reference Manual

4

IBHWDIAG (3) board only IBHWDIAG (3)

Name
ibhwdiag - perform hardware diagnostic tests on the specified board

Synopsis
ibhwdiag(int boardnum, int cable)

Description
boardnum is an index from 0 to [(number of boards) - 1]. cable should be set to
zero if no cable is attached and all tests can be performed, or 1 if a cable is attached.
If a cable is attached, only the tests that can work with a cable attached to the MC-
GPIB are performed.

ibhwdiag performs a series of tests on the GPIB hardware, where each test is
uniquely identified by a number. The ibhwdiag function performs these hardware
tests by accessing the GPIB driver.

The ibhwdiag function returns -1 if there is a communication problem with the
GPIB driver, and -2 if the board is not installed. ibhwdiag returns 0 if all the tests
completed successfully. If one of the hardware tests failed, the function returns a
value greater than 0 with the return value corresponding to the test number that
failed.

Examples
1. Run hardware diagnostics on gpib0 with cable attached.

ibhwdiag(0,1);

2. Run hardware diagnostics on gpib2 with no cables attached.

ibhwdiag(2,0);

See Also
The ibdiag section in the Getting Started manual

5

IBPOST (3) board only IBPOST (3)

Name
ibpost - request notification of the occurrence of an SRQ event

Synopsis
#include <sys/ugpib.h>
int ibpost(int ud, int eventmask)

Description
ud designates a board descriptor, and eventmask specifies a mask bit you want to
associate with an SRQ event. There is no defined mask value to represent the GPIB
SRQ event. In applications that use ibpost , you must define your own mask value
to represent an SRQ event. However, you need to make sure that the value you
define does not coincide with the predefined mask values the system reserves to
represent certain general events. Please refer to the system file sleep.h for a list
of the mask values defined for general events.

Like the NI-488 function ibsgnl , ibpost returns immediately, freeing the
application program to perform other tasks. When an SRQ interrupt occurs, the
driver issues an e_post with the SRQ eventmask as one of its parameters. This
causes the kernel to set the SRQ mask bit. The only way the application can
examine and clear this bit is with the e_wait kernel function. Therefore, when the
process needs to check or wait for an occurrence of the SRQ interrupt, it has to
execute an e_wait on the SRQ mask bit.

Note: To use this function you must have access rights to use the kernel
extensions from your application.

Example

Call ibpost with the SRQ event bit defined to be 0x2000000.

ibpost(brd0, 0x2000000);

See Also
The e_post and e_wait kernel function descriptions on the man pages

	Supplement to the NI-488M Software Reference Manual for AIX
	ibdev
	ibhwdiag
	ibpost

